You can mail me Contact Me!
Posts

Brute-force Approach of Problem Solving

The brute force approach to problem-solving involves systematically trying all possible solutions to find the correct one.
Flowchart for Password Guessing:
flowchart TD A([Start]) --> B[Initialize Allowed Characters] B --> C[Set Password Length] C --> D["Call generate_combinations with empty string and full length"] D --> E{Are all combinations\ngenerated?} E -->|No| F[Add next character\nto current combination] F --> G[Recursively generate\nall sub-combinations] G --> E E -->|Yes| H{Try Current Guess} H --> |Guess Matches| I[/Print "Password Found"/] I --> J[Return Password] H --> |Guess Does Not Match| K[Print Current Guess] K --> L{"More Combinations?"} L -->|Yes| H L -->|No| M[/Print "Password Not Found"/] M --> N([End]) J --> N

Flowchart for Padlock Guessing:
flowchart TD A[Start] --> B[Initialize First Digit i = 0] B --> C[Initialize Second Digit j = 0] C --> D[Initialize Third Digit k = 0] D --> E[Initialize Fourth Digit l = 0] E --> F{Is Combination Found?} F -->|No| G[Construct Current Combination] G --> H[Print Current Attempt] H --> I{Is Current Combination\nEqual to Correct\nCombination?} I -->|Yes| J[Print Lock Cracked] I -->|No| K{Increment l} K -->|l < 10| E K -->|l = 10| L{Increment k} L -->|k < 10| M[Reset l to 0] M --> E L -->|k = 10| N{Increment j} N -->|j < 10| O[Reset k to 0] O --> E N -->|j = 10| P{Increment i} P -->|i < 10| Q[Reset j to 0] Q --> E P -->|i = 10| R[End: No Combination Found] J --> S[End] R --> S

Flowchart for Padlock Guessing:
flowchart TD A([Start]) --> B[Initialize First Digit i = 0] B --> C[Initialize Second Digit j = 0] C --> D[Initialize Third Digit k = 0] D --> E[Initialize Fourth Digit l = 0] E --> F{Is Combination Found?} F -->|No| G[Construct Current Combination] G --> H[/Print Current Attempt/] H --> I{Is Current Combination Equal to Correct Combination?} I -->|Yes| J[/Print Lock Cracked/] I -->|No| K{Increment l} K -->|l < 10| E K -->|l = 10| L{Increment k} L -->|k < 10| M[Reset l to 0] M --> E L -->|k = 10| N{Increment j} N -->|j < 10| O[Reset k to 0] O --> E N -->|j = 10| P{Increment i} P -->|i < 10| Q[Reset j to 0] Q --> E P -->|i = 10| R[End: No Combination Found] J --> S[End] R --> S

Flowchart for finding prime number:
flowchart TD A[Start] --> B[Input Range n] B --> C[Initialize num = 2] C --> D{Is num < n?} D -->|Yes| E[Set is_prime = True] E --> F[Initialize divisor i = 2] F --> G{Is i < num?} G -->|Yes| H{Is num divisible by i?} H -->|Yes| I[Set is_prime = False] I --> J[Break inner loop] H -->|No| K[Increment i] K --> G G -->|No| L{Is is_prime True?} L -->|Yes| M[Print num] M --> N[Increment num] N --> D L -->|No| N D -->|No| O[End] J --> L

Post a Comment

Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
Site is Blocked
Sorry! This site is not available in your country.